Effect of higher frequency components and duration of vibration on bone tissue alterations in the rat-tail model

نویسندگان

  • Srikara V. PEELUKHANA
  • Shilpi GOENKA
  • Brian KIM
  • Jay KIM
  • Amit BHATTACHARYA
  • Keith F. STRINGER
  • Rupak K. BANERJEE
چکیده

To formulate more accurate guidelines for musculoskeletal disorders (MSD) linked to Hand-Arm Vibration Syndrome (HAVS), delineation of the response of bone tissue under different frequencies and duration of vibration needs elucidation. Rat-tails were vibrated at 125 Hz (9 rats) and 250 Hz (9 rats), at 49 m/s(2), for 1D (6 rats), 5D (6 rats) and 20D (6 rats); D=days (4 h/d). Rats in the control group (6 rats for the vibration groups; 2 each for 1D, 5D, and 20D) were left in their cages, without being subjected to any vibration. Structural and biochemical damages were quantified using empty lacunae count and nitrotyrosine signal-intensity, respectively. One-way repeated-measure mixed-model ANOVA at p<0.05 level of significance was used for analysis. In the cortical bone, structural damage quantified through empty lacunae count was significant (p<0.05) at 250 Hz (10.82 ± 0.66) in comparison to the control group (7.41 ± 0.76). The biochemical damage was significant (p<0.05) at both the 125 Hz and 250 Hz vibration frequencies. The structural damage was significant (p<0.05) at 5D for cortical bone while the trabecular bone showed significant (p<0.05) damage at 20D time point. Further, the biochemical damage increased with increase in the duration of vibration with a significant (p<0.05) damage observed at 20D time point and a near significant change (p=0.08) observed at 5D time point. Structural and biochemical changes in bone tissue are dependent upon higher vibration frequencies of 125 Hz, 250 Hz and the duration of vibration (5D, 20D).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence of Higher Frequency Components on Bone Tissue Alterations in the Rat-tail Model

Through a recently conducted rat-tail vibration experiment, we have been able to determine that the tested frequencies of vibration have a significant effect on biochemical damage signified by nitro-tyrosine (NT) staining on trabecular bone, while structural damage quantified through a Hematoxylin and Eosin (H&E) stain on cortical bone exhibited statistical significance only for the 250 Hz grou...

متن کامل

Effect of whole body vibration therapy on circulating serotonin levels in an ovariectomized rat model of osteoporosis

  Objective(s): Studies have reported that whole body vibration (WBV) played a vital role in bone remodeling. Circulating serotonin is also involved in negative regulating bone mass in rodents and humans. However, both WBV and inhibition of serotonin biosynthesis may suppress receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis in vitro . The purpose of the ...

متن کامل

Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo

Objective(s):To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods:Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To t...

متن کامل

The effect of intrathecal delivery of bone marrow stromal cells on hippocampal neurons in rat model of Alzheimer’s disease

Objective(s): Intracerebral injection of bone marrow stromal cells (BMSCs) is being investigated as a therapeutic tool to prevent Alzheimer's disease (AD). Our aim was to investigate the effects of BMSCs by intrathecal injection in AD rat model. Materials and Methods: BMSCs were obtained from the bone marrow of Wistar rat and transplanted into AD rat model via intrathecal injection. The rat mod...

متن کامل

The effect of parameters of low-frequency electrical stimulation on piriform-cortex kindled seizures in rat

Introduction: Electrical low-frequency stimulation (LFS) has antiepileptic effect, but the role of different stimulation parameters on this effect has not been determined. In this study the effect of different LFS parameters (intensity, pulse duration and train duration) on piriform-cortex kindled seizures was investigated. Methods: Seizure was produced in animals using kindling model of ep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2015